Welcome to the Renewable Energy Engineering Department at Fahad bin Sultan University!

Here, innovation and sustainability converge to shape the future of energy. As you step into our department, you enter a dynamic environment where groundbreaking research, hands-on learning, and real-world applications come together to tackle one of the most pressing challenges of our time: the transition to renewable energy.

Led by esteemed faculty and supported by state-of-the-art facilities, our department is committed to nurturing the next generation of renewable energy leaders. Whether you're passionate about solar, wind, hydro, or emerging technologies, you'll find a rich array of opportunities to explore, innovate, and make a meaningful impact.

 المهمة:

تخريج مهندسي طاقة متجددة أكفاء مجهزون بالمعرفة السليمة والبحث والمهارات الأساسية من أجل:

•   أن يكونوا رواداً مساهمين في خطط التنمية الوطنية الشاملة والمستدامة.
•   تكريس المهارات والمعرفة الهندسية القيمة نحو تصميم وبناء وتشغيل مشاريع الطاقة المتجددة.
 •   دعم جهود المملكة لإدخال الطاقة المتجددة كجزء من مزيج الطاقة لديها، بما يتماشى مع رؤية المملكة العربية السعودية 2030.
•   العمل في بيئات متنوعة، واحتضان التعلم مدى الحياة، والتعاون والقيادة في فرق متعددة التخصصات.

أهداف برنامج هندسة الطاقة المتجددة (POs):

  1. تزويد الطلاب بالفهم الكافي للمتطلبات الأساسية في النظرية والتصميم والعلوم الأساسية لمهنة في مجال هندسة الطاقة المتجددة.
  2. تنمية مهارات الطلاب في مجال هندسة الطاقة المتجددة لتأهيلهم لسوق العمل.
  3. تطوير نهج الطلاب المهني للهندسة على أساس الشعور القوي بخدمة المجتمع والعمل الجماعي والمسؤولية والأخلاق العالية.
  4. تزويد الطلاب بالأدوات المناسبة لمعالجة مشاكل البحث المفتوحة في مجال هندسة الطاقة المتجددة ومتابعة الدراسات العليا في الجامعات القياسية الدولية.

نتائج التعلم

 

A.     ABET Student Learning Outcomes (SLOs) and their Performance Indicators (PIs) 

Student Learning Outcome (SLO)

Performance Indicator (PI)

1) an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.

1a- an ability to identify the principles of engineering, science, and mathematics.

1b- an ability to formulate complex engineering problems based on the principles of engineering, science, and mathematics.

1c- an ability to apply engineering, science, and mathematics principles to solve complex engineering problems.

2) an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.

2a- an ability to produce a clear needs statement in a design project, identify design problem constraints, and establish criteria for solutions acceptability and desirability.

2b- an ability to evaluate and analyze the economics of an engineering problem solution and to use appropriate analysis techniques to characterize and respond to risks in product or process design.

3) an ability to communicate effectively with a range of audiences.

3- an ability to communicate effectively with a range of audiences.

4) an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.

4a- an ability to recognize ethical and professional responsibilities in engineering situations.

4b- an ability to evaluate alternative engineering solutions, which consider design conflict issues in economic, environmental, and societal contexts

5) an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.

5a- an ability to recognize participants roles in a team setting, fulfill appropriate roles to assure team success, integrate inputs from all team members, and make decisions in relation to objectives criteria.

5b- an ability to monitor team progress and make suggestions accordingly.

6) an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.

6a- an ability to show good lab practice and instrumentation skills to measure specific quantities and extract required data.

 

6b- an ability to use appropriate tools to analyze data and verify and validate experimental results, while accounting for experimental errors.

7) an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

7- an ability to express awareness of continuous learning and research, after graduation, and find information relevant to problem solutions without guidance.

 

B.     NCAAA Program learning Outcomes (PLOs) 

NCAAA Program learning Outcomes (PLOs) (NQF)

Knowledge and Understanding

K1

Gain knowledge of mathematics, science, and engineering.

K2

Outline engineering problems solutions based on the principles of physical sciences and mathematics.

K3

Describe and categorize engineering related contemporary issues.

Skills

S1

Solve engineering problems by applying principles of mathematics, science, and engineering.

S2

Develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgement to draw conclusions.

S3

Apply modern techniques and skills to produce solutions in global, economic, environmental, and societal contexts for engineering practice.

S4

Acquire and apply life-long learning skills as needed, using appropriate learning strategies.

S5

Communicate effectively with a range of audiences.

Values

V1

Uphold ethical and professional responsibilities.

V2

Function and contribute effectively in a team.

     

 

C.     ABET SLOs-NCAAA PLOs Mapping 

PIs of ABET (1)-(7)

1a

1b

1c

2a

2b

3

4a

4b

5a

5b

6a

6b

7

NCAAA PLOs

K1

K2

S1

S3

S3

S5

V1

V1

V2

V2

S2

S2

K3, S4

 

D.    POs-NCAAA PLOs Mapping

POs

NCAAA PLOs

                    I.            Provide students with adequate understanding of the essential prerequisites in theory, design, and basic sciences for a profession in the field of renewable energy engineering.

(K1, K2, S1, S3, K3, S4)

                  II.            Develop students' skills in the field of renewable energy engineering to qualify them for the job market.

(S1, S3, V1, S2, K3, S4)

               III.            Develop students’ professional approach to engineering based on a strong sense of community service, teamwork, responsibility, and high ethics.

(S5, V1, V2)

                IV.            Equip students with proper tools to address open research problems in the field of renewable energy engineering and to pursue graduate studies in international standard universities.

(K1, K2, S1, S5, V2, S2, K3, S4​)

 

E.     POs-ABET SLOs Mapping

POs

ABET SLOs

                    I.            Provide students with adequate understanding of the essential prerequisites in theory, design, and basic sciences for a profession in the field of renewable energy engineering.

(1a, 1b, 1c, 2a, 2b, 7)

                  II.            Develop students' skills in the field of renewable energy engineering to qualify them for the job market.

(1c, 2a, 2b, 4a, 4b, 6a, 6b, 7)

               III.            Develop students’ professional approach to engineering based on a strong sense of community service, teamwork, responsibility, and high ethics.

(3, 4a, 4b, 5a, 5b)

                IV.            Equip students with proper tools to address open research problems in the field of renewable energy engineering and to pursue graduate studies in international standard universities.

(1a, 1b, 1c, 3, 5a, 5b, 6a, 6b, 7​)

 

المناهج وهيكل البرنامج

للتخرج بدرجة البكالوريوس في هندسة الطاقة المتجددة ، يجب على الطلاب إكمال 159 ساعة معتمدة بشكل مرض. يتم توزيع الدورات على النحو التالي:

متطلبات الجامعة

ما مجموعه 37 ساعة معتمدة من متطلبات التعليم العام:

  •  6 ساعات معتمدة للغة العربية: ARAB 101 و 201.
  •  15 ساعات معتمدة من مهارات الاتصال باللغة الإنجليزية: ENGL 100 ,101,102,203, 206.
  •  7 وحدات للدراسات الاجتماعية والثقافية: SOCS 101 ، PHE 101 ، ودورة اختيارية مجانية.
  •  3 وحدات لأساسيات الحوسبة للمهندسين: IT 101.
  •  6 وحدات في الرياضيات: MATH 100 and STAT 100

 

متطلبات الكلية

يطلب من طلاب قسم هندسة الطاقة المتجددة إكمال ما مجموعه 42 ساعة معتمدة في متطلبات الكلية موزعة على النحو التالي:

  •  11 ساعة معتمدة في العلوم: PHYS 101 ، PHYS 102 ، PHYS 103L ، CHEM 101 / 101L ؛
  •  18 ساعة معتمدة في الرياضيات والإحصاء: MATH 101, MATH 102, MATH 201, MATH 202, MATH 215, and STAT 230 ؛
  •  6 ساعات معتمدة في البرمجة الهندسية: CSC 101 and ELEE 230 ؛
  •  3 ساعات معتمدة في الاقتصاد الهندسي: 300 COEN 
  •  1 ساعة معتمدة في أخلاقيات الهندسة: 401 COEN 
  •  1 ساعة معتمدة في الرسومات الهندسية: CIVE 205

 

متطلبات البرنامج

يجب على طلاب هندسة الطاقة المتجددة إكمال 82 ساعة معتمدة في متطلبات البرنامج بما في ذلك الدورات الأساسية الـ 70 التالية:
▪  MECH 225, MECH 230, MECH 342, ELEE 212, ELEE 242, ELEE 350, ELEE 360,ELEE380,ELEE 480L,ELEE245L,REE260,REE310,REE320,REE320L,REE340,REE350,REE400,REE420,REE460,REE420L,REE460L,REE470,REE474,REE480,REE487,REE466,REE498,REE499,
بالإضافة إلى ذلك ، يجب أن يأخذ طلاب هندسة الطاقة المتجددة ثلاث دورات اختيارية من 12 ساعات معتمدة ، وتشمل الاختيارية المقبولة:
▪  REE 465, REE 471, REE 472, REE 475, REE 476, REE 477, REE 478, REE 479, REE 481, REE 482, REE 483, REE 485, REE 486, REE 473, REE 488.